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Reduction of cholesterol ester (CE) from lipid burden lesion-associated macrophage foam 

cells has been shown to reduce plaque volumes. Hydrolysis of CE to free cholesterol (FC) 

in macrophages is an essential step for removal of CE from the macrophage and its 

transport to the liver by high density lipoprotein (HDL) for further metabolism. Since CE 

must again be hydrolyzed into FC in the liver catalyzing this hydrolysis, it becomes 

imperative to find the identity of these enzymes. In this study the role of key enzyme in 

catalyzing the hydrolysis of CE to FC, neutral cholesterol ester hydrolase (CEH) was 
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evaluated. Further, ability of this CEH to hydrolyze CE delivered via scavenger receptor 

BI (SR-BI) or SR-BII was also monitored. CE hydrolysis and FC efflux were monitored 

from cells transfected with CEH expression vector. No significant difference was noted in 

either the intracellular CEH activity or FC efflux between cells transfected with an empty 

vector or a CEH expression vector. Further no difference was seen when experiments were 

repeated with cells stably transfected with SR-BI or SR-BII. Future experiments with more 

optimization of the cells system used will be required to reach any conclusions on the role 

of CEH in hydrolyzing HDL-CE delivered via SR-BI/BII. 
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INTRODUCTION 
 
 
 
 

The name Cholesterol comes from the Greek chole- (bile) and stereos (solid), and the 

chemical suffix –ol for an alcohol, because Francois Poulletier de la Salle first identified 

cholesterol in solid from gallstones in 1769, but is was named as the compound 

“cholesterine” in 1815 by Eugene Chevreul (1). Cholesterol is a soft, waxy alcohol that is 

composed of a head group which is a hydroxyl group at C-3 and nonpolar hydrocarbon 

body, which is the steroid nucleus and the hydrocarbon side chain at C-17. Fatty acids 

esterified to cholesterol can reach as long as 16-carbon. Cholesterol synthesis in 

vertebrates usually takes place in the liver and it’s the principal sterol synthesized by 

animals, but small quantities may be produced by other eukaryotes; such as fungi (2). A 

small fraction of the cholesterol is incorporated in the membrane of the hepatocytes, but 

most of it usually is exported as biliary cholesterol, bile acids, or cholesteryl esters in the 

form of lipoproteins. Polar derivatives of cholesterol are bile acids that act as detergents 

in the intestine, acting as emulsifying agents; so dietary fats become more readily 

accessible to digestive lipases. Bile salts help in the absorption of fat soluble vitamins 

such as Vitamin A, D, E and K in the intestine. All growing cells need cholesterol for 

new membrane synthesis, where it contributes to the level of rigidity and permeability of 

the membrane. The hydroxyl group on cholesterol interacts with the polar head groups of 
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the membrane phospholipids and sphingolipids, while the hydrocarbon chain and bulky 

steroid are embedded in the membrane; alongside the nonpolar fatty acid chain of other 

lipids, this allows the permeability of the plasma membrane to hydrogen and sodium 

ions.  Apart from serving as membrane constituents, cholesterol can also be used in 

steroid hormone synthesis such as cortisol and aldosterone; which are potent hormones 

that regulate gene expression. Cholesterol also functions as a precursor to sex hormones 

such as progesterone, estrogens and testosterone. Cholesterol also functions in 

intracellular transport, cell signaling and nerve conduction. The myelin sheath, which are 

rich in cholesterol provide insulation for more efficient conduction of action potential 

within neurons. Cholesterol and cholesteryl esters, just like triacylglycerols and 

phospholipids, are hydrophobic. However they have to be moved from tissue of origin to 

the tissues in which they will be stored or utilized. Cholesterol is carried through the 

blood with a combination of phospholipids, cholesterol, cholesteryl esters, and 

triacylglycerol and plasma lipoproteins. Apolipoprotein combines with lipids to form a 

complex with a hydrophobic center, which stores the lipids and a hydrophilic outer 

surface made of amino acid side chains to facilitate its movement through the aqueous 

environment. There are many types of lipoproteins and each type has a specific function, 

which can be determined by its origin of synthesis, reaction of specific antibodies and its 

contents. 
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WHOLE BODY CHOLESTEROL HOMEOSTASIS 

Organisms obtain their cholesterol need from three sources: fats such as a complex 

mixture of triglycerides, cholesterol, sterols, monoglycerides, diglycerides and 

phospholipids consumed in diet, Cholesterol esters stored in cells as lipid droplets, and 

cholesterol synthesized and packaged into lipoprotein in an organ to export to another. 

Different species will range from using only one method to utilizing all three for their 

cholesterol needs. Plants for example utilize the fats such as triglyceride stored in seeds 

during germination; otherwise they do not depend on triglycerides for energy. Vertebrates 

obtain fat from their diet, such as meat, poultry, fish, egg, butter, cheese and whole milk, 

while producing cholesterol from the liver and storing cholesterol esters within cells. 

Food from plant based sources like fruits, vegetables and cereals do not contain fats, 

except for nuts and seed. Foods with saturated fats also cause the body to make more 

cholesterol. Vertebrates also utilize fats stored in tissues (adipose) and, the liver converts 

excess carbohydrates to fats for export to other tissues. In vertebrates, before the ingested 

triacylglycerols are absorbed through the intestinal wall, they have to be converted from 

macroscopic insoluble fat particles to finely dispersed microscopic micelles. This 

solubilization of ingested triacylglycerols is carried via bile salts, which are synthesized 

from the cholesterol in the liver. Bile salts are amphiphatic compounds which act as 

detergents, helping in the breakdown of triacylglycerols into mixed micelles of bile salts, 

cholesterol and fatty acids. Bile salt formation starts when bile acids are produced in the 

liver and secreted in the intestine via the gall bladder, where they are stored. Bile acids 

are oxidation products of cholesterol; they are conjugated with taurine or the amino acid 
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glycine. Hydrophobic/toxic bile acids are conjugated with sulfate or a glucuronide. 

Taurocholic acid and glycoholic acid (derivatives of cholic acid) represent approximately 

forty percent of all bile acids in humans. Once the micelle is formed via the assist of bile 

acids, it exponentially increases the fraction of lipid molecules, which will be accessible 

to the action of hydrophilic lipases in the intestine. The products of the lipases diffuse 

across the epithelial lining the intestinal surface, where they will be reconverted back into 

triacylglycerols and be incorporated with cholesterol and apolipoproteins, into 

chylomicrons. Chylomicrons which contain apolipoprotein C-II (apoC-II) move from the 

intestinal surface (intestinal mucosa) into the lymphatic system, and then enter the blood, 

from there they are carried to the muscles or tissues where their contents are utilized. In 

the capillaries of the tissue the extracellular enzyme lipoprotein lipase, which is activated 

by apoC-II hydrolyzes the triacylglycerols into fatty acids and glycerol, which are taken 

up by the cells in the target tissues. The chylomicrons which are now mostly depleted of 

their triacylglycerols still contain cholesterol and apolipoproteins. Chylomicron 

reminants are taken up via the liver through endocytosis, mediated by receptors for their 

apolipoproteins. When the diet contains more fatty acid then is needed for immediate fuel 

for metabolic regulation in the organism or as precursor for membranes or signaling 

molecules, the liver converts them to triacylglycerols, which are packaged into very low 

density lipoprotein (VLDL); the liver synthesizes triacylglycerols as well. Excess 

carbohydrates in the body can also be converted to triacylglycerols and exported via 

VLDLs. VLDLs also contain cholesterol and cholesteryl esters, with various lipoproteins 

such as apoC-II and apoB, apoB being the main apo-protein. As the VLDL moves 
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through the blood stream, apoC-II activates extracellular lipoprotein lipase, which causes 

the release of free fatty acids from VLDL. The loss of triacylglycerol converts VLDL to 

VLDL remnant, also known as low-density lipoprotein (LDL). LDLs are very rich in 

cholesterol, cholesteryl esters and apoB-100 lipoprotein. As LDLs move through the 

blood stream, tissues that have specific plasma membrane receptors that recognize apoB-

100 take up the cholesterol and cholesterol esters. Free cholesterol (FC) is utilized in the 

tissues and the tissues store excess FC as cholesterol ester (CE), which is esterified by 

acyl-CoA: cholesterol acyltransferase 2 (ACAT2) in the liver and intestine, and ACAT-1 

in all other tissues. Once the tissues have fulfilled their needs for the cholesterol and 

cholesterol esters, they down regulate the expression of LDL receptor and LDL is then 

taken up via the liver through the LDL receptor and it re-enters hepatic lipid metabolism 

(3). The process of LDL returning back to the liver is known as the classic cycle. When 

in excess the LDL becomes modified and cannot be taken up by tissues, it is then taken 

up via arterial wall-associated macrophages due to their expression of scavenger 

receptors (SR-A or CD-36) (4). The uptake of modified LDL leads to formation of foam 

cells, accumulation of which in the lumen leads to coronary artery disease such as 

atherosclerosis (5). Removal of CE from foam cells is possible through a process known 

as reverse cholesterol transport (RCT). 

 

IMPORTANCE OF LIVER 

Once the modified LDL is taken up via macrophages, the LDL-CE are hydrolyzed in the 

lysosomes and the resulting FC is transferred out of the lysosome; the excess FC is re-
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esterified by ACAT-1; this is known as the futile cycle and it helps maintain proper FC 

concentration (6). One of the ways to retrieve the cholesterol ester (CE) from within the 

macrophage and the only way to get rid of it through the body is done via a process 

known as “Reverse Cholesterol Transport”, which plays a role in even delaying or 

reversing early stages of atherosclerosis; in which the liver plays a major role. The liver is 

the central organ in cholesterol manufacturing and processing, and its inherent ability to 

dispose of excess cholesterol through production of biliary cholesterol and bile acid, 

which help in digestion of fats and can also be excreted through the feces. The liver 

manufactures Apolipoprotien A-I (ApoA-I) which is necessary for the in vivo formation 

of HDL (7). The premise of HDL and Apo-AI being protective against development of 

aortic lesions coronary disease has been supported by expressing human Apo-AI in 

transgenic mice (8). Also the decrease of atherosclerosis is shown in apo-AI transgenic 

mice (9). Increased plasma levels of HDL and Apo-AI have also been shown to be 

inversely proportional to the risk of developing coronary heart disease (10,11). ApoA-I 

protein in turn accepts the FC from the foam cells, which is mediated by the ATP-binding 

cassette protein A1 (ABCA1) and ABCG1/ABCG4. ABCA1 and ABCG1/ABCG4 

mediates the transfer of cellular FC, which is CE hydrolyzed by neutral cholesterol ester 

hydrolase (CEH) within the cell and phospholipids to Apo-AI, to form HDL (12, 13). The 

FC is esterified to CE by plasma lecithin cholesterol acyltransferase (LCAT) and then 

transferred inside the core of HDL. The HDL moves through the blood stream and is 

taken up via the liver through Scavenger receptor BI (SR-BI) or minor form SR-BII (14).  

The CE then is hydrolyzed via neutral CEH into FC. Conversions of FC to bile acids and 
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direct secretion of FC into bile are the two major mechanisms for cholesterol elimination 

from the body. In humans there is a 50:50 ratio, of conversion of FC to bile acid and 

direct secretion into bile (15). Since there is only a small proportion (5-20%) of biliary 

acid which is actually made de novo (16, 17), most of the cholesterol has to be supplied 

by hepatic uptake of lipoprotein (18). The main lipoprotein that provides cholesterol for 

the liver is HDL which is taken up via SR-BI/BII receptor. Goodman and Lequire 

showed that after the uptake of HDL-CE there is a significant amount of tracer associated 

with FC, thus proving involvement of an efficient hydrolysis (19). Shimada et al. showed 

that this hydrolysis is extra lysosomal and catalyzed by a neutral CEH (20). Thus, neutral 

CEH plays an important role in CE hydrolysis in the first and last step of RCT. 

 

CHOLESTROL ESTER HYDROLASE 

Reverse cholesterol transport is the primary mechanism for removal of cholesterol from 

foam cells and the rate limiting step is the intracellular hydrolysis of CE to FC by neutral 

CEH (21, 22). In the liver, CEH is also responsible for hydrolyzing CE to FC for use in 

biliary cholesterol secretion into bile. CEH thus plays a major role in the first and last 

step of RCT. Compared to ACAT which differs from macrophage form (ACAT-1) (23) 

and hepatic form (ACAT-2) (24), and is coded by different genes (25). Human liver and 

macrophage CEH are highly homologous and coded by a single gene on human 

chromosome 16 (26). Initially CEH was not regarded as the enzyme responsible for 

hydrolysis of CE in macrophage and hepatic cells, even with observed inverse correlation 

of CEH expression to atherosclerosis in animal species (27,28,29). Many thought that 
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cholesterol ester hydrolase in murine macrophages to be similar to hormone sensitive 

lipase (HSL), which are present in adipose and steroidogenic tissues (30, 31, 32). The 

idea of HSL being the cholesterol ester hydrolase were proven to be moot with the 

finding, that overexpression of HSL in transgenic mice macrophages showed increased 

atherosclerosis (33). Dr. Ghosh has identified and reported the cloning of human 

macrophage CEH cDNA (34). Over expressing this neutral CEH has been shown to 

decrease the amount of CE within macrophages (34), while RNA silencing of neutral 

CEH has shown a decrease in CE hydrolysis and overexpression has shown inhibition of 

CE levels in macrophages (35). All evidence point towards the likely candidate for CE 

hydrolysis in macrophage and hepatic cell to be neutral CEH. Even though the liver still 

synthesizes a small amount of cholesterol de novo, it must still take up CE from HDL-CE 

for majority of the CE it hydrolyzes. The primary source of CE is from HDL-CE via SR-

BI/BII, which provides the liver with the CE necessary for hydrolysis into FC; which is 

used for bile acids synthesis and direct secretion into bile. 

 

SCAVENGER RECEPTOR- BI/BII 
 
Reverse cholesterol transport plays a key role in extracting CE from foam cells and 

inserting them in the core of the HDL to be hydrolyzed within the liver and converted to 

bile acids, or directly secreted into the bile. This whole process requires scavenger 

receptor BI/BII (SR-BI/BII). SR-BI/BII are members of the scavenger receptor super 

family of proteins, they bind to a variety of ligands and seem to have a high affinity for 

HDL; showing selective lipid uptakes by tissues (36, 37). Many forms of lipids can be 
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taken up via these receptors, but highest uptake constants have been for CE and FC, 

while low constant rates have been observed for phospholipids and triglycerides (38). 

SR-BI/BII are splice variant of the same gene and are bonafide HDL receptors. SR-BI is 

mostly localized at the surface of cells, while SR-BII is expressed intracellularly. SR-BI 

mediates uptake of HDL at the cell membrane level, while SR-BII mediates it through 

endocytosis; showing that they both contain a distinct mechanism (38). Pulse chase 

experiment shows that SR-BII facilitates higher uptake of HDL-CE than that of SR-BI, 

due to it being endocytosed; while SR-BI maintained expression at the surface of cells 

(39). SR-BI/BII are highly expressed in the liver, adrenal gland and ovary for HDL 

metabolism. The SR receptors play a major role in providing the cholesterol that these 

tissues need for bile acids (liver) and hormones (adrenal gland). Absence of SR-BI 

receptors in knockout mice has shown depletion of internal store of cholesterol in the 

adrenal glands after the mice fasted, also showing a substantial increase of CE in wild 

type mice adrenal gland and lowering of CE in knockout mice by 44%; showing the 

importance of SR-BI receptors in accepting cholesterol through its hydrophobic core for 

the adrenal gland to utilize it for synthesizing hormones (40). SR-BI suppression in 

hyperglycemia has also been linked to accelerated atherosclerosis in diabetics (41). SR-

BI expression has also been seen in small intestine, but its role remains unclear. SR-

BI/BII plays a vital role in the uptake of CE from HDL for various purposes, but they 

also play an important role in reducing plaque volumes in atherosclerosis. SR-BI/BII’s 

expression on the macrophages allows HDL to take up FC from the macrophage and 

deliver it to the liver. The liver in turn takes up the FC from the HDL-CE via SR-BI/BII 
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receptors. By removing CE from within the macrophages, the cell is prevented from 

bursting and depositing the oxidized cholesterol in the lumen; leading to fatty streaks 

which promotes atherosclerosis. It has been clearly shown that over expressing SR-BI/BII 

reduces atherosclerosis in mice and human (42, 43). 

 

ATHEROSCLEROSIS 

The name atherosclerosis generates from the Greek words athero (gruel or paste) and 

sclerosis (hardness). Atherosclerosis is popularly thought of as a modern disease, but 

evidence of fatty streaks in ancient Egyptian mummies has proven otherwise.  

Atherosclerosis is a syndrome that affects the arterial blood vessels when they harden due 

to plaque formation, also causing reduced circulation, which leads to death of progressive 

tissues attached to the arteries. It is a chronic inflammatory response in the wall of the 

arteries, which is due to the accumulation of macrophages and is promoted especially by 

small particle LDLs and further advanced with inadequate removal of cholesterol from 

macrophages by HDL. Atherogenesis starts when LDL particles become oxidized by 

oxygen free radicals (ROS) (44, 45, 46), due to ROS atherosclerosis usually develops in 

arteries where oxygen levels are high versus that of veins. Once LDL has become 

modified, it causes damage to arterial wall and the immune system responds by sending 

in monocytes to take up the modified LDL. The monocytes differentiate into 

macrophages, which take up the modified LDL causing them to have a foamy appearance 

leading to their nomenclature of “foam cells”. Once the macrophages have taken up the 

modified LDL they are not able to metabolize it, resulting in their growth and rupture. 



www.manaraa.com

 

 18

Rupturing of the macrophage causes deposits of oxidized cholesterol in the artery wall, 

resulting in recruitment of more macrophages to continue the cycle of taking up oxidized 

cholesterol from previously ruptured macrophages; this continuous cycle causes the 

arteries to become inflamed. The ruptured macrophages with lymphocytes, platelets and 

localized smooth cells lead to formation of so called “fatty streaks”. Eventually smooth 

muscle cells migrate from the tunica media to intima; responding to the cytokines 

secreted by damaged endothelial cells and macrophages. Micro calcification forms within 

the smooth muscles that are surrounding the damaged endothelial cells. As time passes 

and cells die, they are filled with extracellular calcium deposits between the muscular 

wall and outer portion of the atheromatous plaques. The capped atheromas produce 

enzymes which cause the artery to enlarge, as long as the arteries are enlarged enough to 

compensate for the thickness of the atheroma, no stenosis occurs. Eventually over time if 

calcification continues and the atheroma becomes thicker than the compensated size of 

the artery, an aneurysm is created. Though atherosclerosis a slow progressing disease, 

which can span decades and remain asymptomatic; once the atheroma obstructs the 

bloodstream in the artery it could lead to death of the tissue to which it was supplying 

nutrients. In most cases even when an artery ruptures and lipid matrix breaks through the 

thinning collagen, causing the lipid to come into contact with the blood; causing clotting. 

Platelet adhesion causes the clotting cascade to form a thrombus. The thrombus has the 

ability to move throughout the blood stream and become lodged in areas that are narrow, 

causing block of blood flow.  Even though any arteries of the body can be involved, only 

critical ones come up in terms of clinical relevance; such as in the heart. Major plaque 
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ruptures in major arteries around the heart could lead to complete block of the artery, 

leading to myocardial infarction. Many factors are known to aid in increasing the chance 

of acquiring atherosclerosis, some are controllable such as lipid intake, sedentary 

lifestyle, high carbohydrate intake, intake of trans fat and while others include advanced 

age, being a male gender and genetic factors. The only mechanism for plaque regression 

is through the removal of CE from the foam cells. CEH must hydrolyze the CE within the 

foam cells to FC before HDL is able to uptake the cholesterol, The FC is esterified into 

CE by LCAT for storage as FC is toxic to the body at higher levels. Once HDL delivers 

the CE to the liver, through SR-BI/BII receptor, it must again be hydrolyzed into FC by 

CEH before it can be utilized in formation of biliary cholesterol, bile acid or direct 

secretion into bile to be excreted through the body in feces. The goal of the experiment is 

to evaluate the role of CEH by monitoring CE hydrolysis and evaluate SR-BI/BII 

receptors in taking up CE by monitoring FC efflux from the cells. CHO cells expressing 

no ldl receptors (ldl-A7) or stably expressing SR-BI/BII receptors (ldl-A7 SR-BI/BII) 

will be used in the experiments. Each type of cell will be transfected with CEH 

expression vector or control pcmv vector. HDL-[3H]-CE will be added to the medium of 

the cells and respectively counted as described in methods and materials. The data will be 

evaluated to formulate a conclusion to our goal for the experiment. 
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MATERIALS AND METHODS 

 

MATERIALS 

Hexanes, Acetic Acid (HPLC grade), and CHCL3 were purchased from Fisher Scientific. 

Diethyl ether was purchased from Sigma-Aldrich. Ham’s F-12 Nutrient Mixture 1 X [+] 

L-Glutamine, Geneticin, Penicillin/Streptomycin and 0.05% Trypsin-EDTA were 

purchased from Invitrogen.  Effectene transfection reagent, Enhancer and EC buffer were 

purchased from QIAGEN. TLC plates were purchased from ANAL TECH.  Recombinant 

Cholesterol ester transfer protein (CETP) was obtained from Cardiovascular Targets. 

[3H]- cholesteryl oleate was purchased from PerkinElmer Life and Analytical Sciences. 

Scintillation Cocktail was purchased from ALDRICH. Human HDL protein was 

purchased from INTRACEL.  

 

CELL LINES: 

Cell lines derived from Chinese Hamster Ovary (CHO) cell line were used.  CHO cells 

lacking LDL receptor (ldl-A7) were generated in Dr. Monty Krieger’s laboratory.  These 

cells were stably transfected with either SR-BI (ldlA7-SR-BI) or SR-BII (ldlA7-SR-BII) 

expression vectors in Dr. Deneys van der Westhuysen’s laboratory and all these three cell 

lines were obtained from Dr. Westhuysen’s laboratory.  ldlA7 cells  were cultured in a 

T75 (75cm2) tissue culture flasks in Ham F-12 Nutrient Mixture  supplemented with 10% 
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FBS + P/S at 37ºC under 5% CO2 in a humidified incubator. When the cell culture was 

~90%-100% confluent, the cells were dissociated with 0.05% Trypsin-EDTA and 

passaged into a T75 flask at a split ratio of 1:3. On the day of the experiment the cells 

were dissociated with 0.05% trypsin EDTA, counted and were plated in a 24 well plate 

with 2x105 cells in 1ml per well. The cells were then incubated at 37ºC under 5% CO2 in 

a humidified incubator for 24 hours. ldl A7 SR-BI and ldlA7-SR-BII cells were also 

maintained as described above except that Geneticin ™  was added at a final 

concentration of 250µg /1ml of media to the SR-BI/BII cells, to maintain the stable 

expression of SR-BI/BII in these cells. 

 

PLASMIDS USED FOR OVER-EXPRESSION 

Eukaryotic expression vector for human CEH (pCMV-CEH) developed in Dr. Ghosh’s 

laboratory was used for all studies.  Empty vector (pCMV) was used as a control for 

these studies. 

 

TRANSFECTIONS 

Cells were transfected in 24-well plates after 24 h incubation at 37ºC and 5% CO2 in a 

humidified incubator.   The optimized conditions used for transfection were: 400ng DNA 

in TEDA, 50µl EC buffer (6 mM Tris-HCl [pH 7.6], 1 M NaCl), 3.2µl Enhancer, 4µl 

Effectene and 350µl media per well. Before any experiment, the numbers of wells to be 

transfected were determined and amount of DNA, Enhancer, Effectene and media needed 

was calculated.  DNA was first mixed with EC buffer, then enhancer added and the 
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mixture vortexed for 15 sec and incubated at room temperature for 10 min.  Effectene 

reagent was added after 10 min incubation, the mixture was then vortexed and incubated 

at room temperature for an additional 10 min. Growth media was then added to above 

mixture. During one of the 10 min interval, old media were removed from the plates and 

replaced with fresh 350µl of media per well. DNA complexes (410µl) were then added to 

each well containing 350μl of fresh media. The cells were then incubated for 24-72 hour 

at 37ºC in a 5% CO2 humidified incubator.  

 

LABELING HDL CORE WITH [3H-Cholesteryl Esters] 

100µCi of [3H]-Cholesteryl ester and 200 µl CHCL3 was dried in a 4 ml glass 

scintillation vial under a stream of N2. 4mg (200µl of 20mg/ml stock solution) HDL 

protein and 50µg CETP were added to the vial, final volume was brought to 1.5ml with 

150mM NaCl, 10mM KPO4 (pH 7.2), in a sterile hood. A stir bar was placed into the vial 

and the vial placed in an incubator chamber at 37ºC and was stirred for 5 hours. After 5 

hours the HDL-[3H]-CE samples were loaded on Centricon 50 concentrators in the sterile 

hood and then centrifuged at 13,000g for 10 min to concentrate HDL to 300µl. An aliquot 

of 100µl of concentrated HDL was loaded on a Superose-6 FPLC column and run 

through FPLC using PBS. 1ml fractions were then collected and 5µl was counted from 

each fraction to determine radioactivity. Protein estimations were conducted on the 

samples by using the method of bicinchoninic acid (BCA) assay to determine the protein 

concentration of samples.  The fractions containing the highest protein and radioactivity 
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were pooled and specific radioactivity determined which ranged from 3169-3732 

DPMs/µg HDL-[3H]-CE.  

 

MEASUREMENT OF CELLULAR CHOLESTROL ESTER HYDROLASE ACTIVITY 

Following transfection with either pCMV or pCMV-CEH, cellular cholesteryl ester 

hydrolysis of exogenously delivered radio labeled HDL-CE was determined as follows.  

24h after transfection the medium on the cells was replaced with serum-free medium 

supplemented with 10% lipoprotein deficient serum (LPDS) and HDL-[3H] CE 

(25µg/µl).  ACAT inhibitor (CP-113, 1.25 µg/ml) was also added to the culture medium 

to prevent re-esterification of free cholesterol released following CEH mediated CE 

hydrolysis.  After 24h the cells, the wells were rinsed once with PBS (500µl) and the 

plates were inverted to let dry completely. Once the plates were dry, 1ml of isopropanol 

was added to each well and the plates left in a humidified chamber overnight to extract 

the lipids. Next morning lipid extracts (in isopropanol) were collected into glass tubes 

and were stored at -20ºC. 100µl of 1.0 M NaOH was added to the now empty wells to 

allow for digestion of cell walls (3-4 hour). Protein estimation was later carried out on 

cell lysates using the method of bicinchoninic acid (BCA) assay. The extracted lipids 

were analyzed by TLC.  Silica coated TLC plates were activated by heating in an oven at 

110ºC for at least an hour. The lipid extracts were dried under nitrogen after adding 10µl 

of Standard FC & Standard CE (2mg/ml) as internal standards. Dried lipids were 

resuspended in small amount of CHCl3 and spotted on the activated TLC plates. The 

plates were developed in 90:10:1::Hexane: diethyl ether: Acetic acid (v/v/v) and lipids 
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were then visualized by exposing to I2 vapors. The Origin, CE and FC spots were marked 

and the plates were allowed to decolorize. All three spots for each sample were scraped 

and counted. Cellular CEH activity was calculated as percent hydrolysis (dpm in FC/dpm 

in FC+CE*100). 

 

MEASUREMENT OF FC EFFLUX 

The cells were transfected as described above.  After 24h, the medium was replaced with 

serum-free medium supplemented with 10% Lipoprotein deficient serum (LPDS) and 

HDL-[3H] CE (25µg/µl).  This permitted the delivery of HDL-CE to the cells.  In order to 

monitor the efflux of FC generated by CEH-mediated hydrolysis that reportedly occurs in 

close proximity to the plasma membrane, the medium was replaced after 2 h with serum 

free media supplemented with 10% LPDS and HDL (25µg/µl).  Exogenously added 

unlabeled HDL act as an extra-cellular FC acceptor.  The cells were then kept in the 

incubator chamber at 37ºC and 5% CO2 for 24 hours. Next morning the medium was 

collected from the wells and centrifuged to pellet any floating cells or cellular debris.  Of 

the supernatant 400µl was counted following the addition of 5ml of scintillation cocktail. 

The wells were rinsed with 500µl PBS and then 200µl of 1.0N NaOH was added to 

digest the cells (3-4 hours). 100µl of cell lysate was later counted from each sample to 

determine the cell associated radioactivity.  FC efflux was calculated as percent efflux 

(dpm in the medium/Total dpm medium + cells*100). 
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RESULTS 

  

LABELING OF HUMAN HDL WITH [3H]-CHOLESTERYL OLEATE: Following 

labeling using CETP as described under “Methods”, concentrated HDL was purified on a 

Superose-6 column using FPLC.  As shown in Figure 1a, HDL eluted as a single peak 

with an elution volume of 5ml. The radioactivity associated with each fraction is shown 

in Figure 1b and the fractions containing the peak radioactivity and corresponding to the 

HDL protein peak were pooled. Protein concentration and associated radioactivity of this 

pooled fraction was determined to calculate specific radioactivity which 3169-3732 

DPMs/µg protein.  This purified HDL-[3H]-CE was used for all experiments to deliver 

CE to the cells.  

 

EFFECT OF CEH OVER-EXPRESSION ON THE INTRACELLULAR HYDROLYSIS 

OF HDL-CE DELIVERED VIA SR-BI/SR-BII:  

To evaluate the role of hepatic CEH activity in hydrolyzing HDL-CE, CEH activity 

(expressed as percent hydrolysis) was calculated following transfection of ldl-A7, ldl-A7 

SR-BI and ldl-A7 SR-BII cells as described in Methods. There was no significant 

difference in CEH activity between ldl-A7 cells transfected with empty vector pCMV or 

CEH over-expression vector pCMV-CEH (49.73 ± 9.33 vs 46.54 ± 1.34, P=0.75, Figure 

2).  No significant differences were noted when intracellular CEH activity was compared 
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in ldl-A7-SR-BI (47.09 ± 3.24 versus 46.93 ± 4.71, P= 0.96, Figure 3) or ldl-A7-SR-BII 

cells (40.83 ± 13.70 versus 47.45 ± 7.75, P=0.51, Figure 4).  The data presented here is 

for n=3 wells.  It should be noted that all cells express endogenous CE hydrolytic activity 

and over-expression by transient transfection may not have resulted in a significant 

increase in total cellular CEH activity. Although optimized transfection conditions were 

used, these experiments did not include a measure of transfection efficiency and it is 

likely that the results obtained reflect very low transfection efficiencies. 

 

TO EVALUATE THE ROLE OF SR-BI OR SR-BII IN AFFECTING THE CEH-

MEDIATED INTRACELLLULAR HYDROLYSIS OF HDL-CE:  

To compare the relative role of SR-BI and SR-BII in delivering HDL-CE for intracellular 

hydrolysis by CEH, cellular CEH activity expressed as percent hydrolysis was compared 

between ldl-A7-SR-BI and ldl-A7-SR-BII cells.  As shown in Figure 5, there was no 

significant difference seen in intracellular CEH activity between these two cell types 

(46.93 ± 4.71 versus 47.45 ± 7.75, P=0.93).  However, since there was also no significant 

difference in CEH activity between cells transfected with empty vector and those 

transfected with CEH expression vector, no inference can be drawn about the relative 

contribution of SR-BI and SR-BII in delivering HDL-CE for intracellular hydrolysis by 

CEH.   
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EFFECT OF CEH OVEREXPRESSION ON CELLULAR CHOLESTEROL EFFLUX:  

It is believed that HDL-CE are delivered via SR-BI in close proximity of the plasma 

membrane and are hydrolyzed at this location by intracellular CEH. If this hypothesis is 

true, then the FC released by CEH mediated hydrolysis should be readily available for 

efflux. To test this hypothesis, ldl-A7, ldl-A7-SR-BI and ldl-A7-SR-BII cells were 

transfected with either the empty vector pCMV or the CEH expression vector pCMV-

CEH and FC efflux monitored.  As shown in Figure 6, there was no significant difference 

in FC efflux from ldl-A7 cells transfected with pCMV or pCMV-CEH vector 

(71.28±11.66 versus 71.44±2.29, P=0.98). Similarly, no significant difference in FC 

efflux was noted between ldl-A7-SR-BI and ldl-A7-SR-BII cells transfected with pCMV-

CEH (75.73 ± 6.23 versus 69.03 ± 3.67, P=0.20, Figure 7). Although these data suggest 

that CEH probably does not play a role in stimulating efflux of FC released from HDL-

CE after intracellular hydrolysis, for reasons noted above, additional experiments are 

required to confirm these results and interpretations.  
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FIGURE 1: a. Separation of HDL-[3H]-CE with Superose -6 FPLC 
column. Radioactive cholesterol esters were reacted with HDL in presence 
of CETP to generate HDL-[3H]-CE. The generated HDL-[3H]-CE was 
separated from the mixture using Superose-6 FPLC column in PBS buffer. 
The flow rate was 0.5ml/min and the fractions were collected at 2 min 
intervals. b. FPLC tracing of  HDL-[3H]-CE fractions. 100µl of each 
fraction was counted, and the total counts for each fraction are shown on the 
Y-axis. As shown on the X-axis HDL-[3H]-CE eluted between fractions 6-
12. 

 
 

 
 
 
 
 
 



www.manaraa.com

 

 29

 
 
 
 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

ldl‐A7

%
 H
yd
ro
ly
si
s

pCMV

pCMV‐CEH

p = 0.76

 
 
FIGURE 2: Effect of CEH over expression on hydrolysis of HDL-CE in 
ldl-A7 cells. Cells were plated and transfected as described in “Methods”. 
Total lipids were extracted 72 hours after transfection and FC/CE separated 
by TLC and associated radioactivity determined. Data are expressed as % 
hydrolysis (Mean ± SD). 
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FIGURE 3: Effect of CEH over expression on hydrolysis of HDL-CE in 
SR-BI cells. Cells were plated and transfected as described in “methods”. 
Total lipids were extracted 72 hours after transfection and FC/CE separated 
by TLC and associated radioactivity determined. Data are expressed as % 
hydrolysis (Mean ± SD). 
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FIGURE 4: Effect of CEH over expression on hydrolysis of HDL-CE in 
SR-BII cells. Cells were plated and transfected as described in “methods”. 
Total lipids were extracted 72 hours after transfection and FC/CE separated 
by TLC and associated radioactivity determined. Data are expressed as % 
hydrolysis (Mean ± SD). 
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FIGURE 5: Comparison of CEH mediated HDL-CE hydrolysis: SR-BI 
vs. SR-BII dependent uptake of HDL-CE. Cells were plated and 
transfected as described in “methods”. Total lipids were extracted 72 hours 
after transfection and FC/CE separated by TLC and associated radioactivity 
determined. Data are expressed as % hydrolysis (Mean ± SD). 

Role of CEH in intracellular CE hydrolysis in 
ldl-A7 SR-BI vs. ldl-A7 SR-BII cells 
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FIGURE 6: Effect of CEH over expression on FC efflux generated by 
intracellular hydrolysis of HDL-CE in ldl-A7 cells. Cells were plated, 
transfected and lysed as described in “methods”. Cell lysis and media were 
counted 48 hours after transfection and associated radioactivity determined. 
Data are expressed as % efflux (Mean ± SD). 
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FIGURE 7: Effect of CEH over expression on FC efflux generated by 
intracellular hydrolysis of HDL-CE between ldl-A7 SR-BI vs. ldl-A7 
SR-BII cells. Cells were plated, transfected and lysed as described in 
“methods”. Cell lysis and media were counted 48 hours after transfection 
and associated radioactivity determined. Data are expressed as % efflux 
(Mean ± SD). 
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DISCUSSION 
 
 
 
 

In order to examine the role of CEH in hydrolyzing HDL-CE delivered via SR-BI 

or SR-BII, we monitored the effects of CEH over expression in hydrolyzing CE delivered 

from the core of HDL in ldl-A7 cells (CHO cell derivative) over-expressing either SR-BI 

or SR-BII. Initially when intracellular CE hydrolysis was compared between ldl-A7 cells 

transfected with an empty pCMV vector or a CEH expression vector (pCMV-CEH), no 

significant difference in CE hydrolysis was noted.  Since this CEH expression vector has 

been shown to enhance intracellular CE hydrolysis in earlier experiments (34), it is 

inferred that in the present study other factors contributed to the observed lack of increase 

in CEH activity in cells over-expressing CEH.  One of the most significant factors 

contributing to these results could be inefficient transfection.  Since no other measure of 

transfection efficiency was used, it is not possible to exclude the possibility that the data 

simply reflects poor transfection efficiency.  Future studies should include measurement 

of mRNA to establish successful transfection. 

The same cell culture system and transfection protocol was, however, used to 

examine the role of CEH in hydrolyzing SR-BI/SR-BII delivered HDL-CE.  No 

significant difference was noted between intracellular CE hydrolysis in control cells 

transfected with pCMV and cells transfected with pCMV-CEH.  While one reason could 
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be poor transfection efficiencies as described above, it should be pointed out that all cells 

possess significantly high CE hydrolytic activity and detection of an increase above and 

beyond the endogenous levels may be a limitation.  Other investigators namely Drs. 

David Williams and Margery Connelly had observed similar issues and had 

unsuccessfully attempted to optimize a cell culture system with low levels of CE 

hydrolytic activity suitable for these studies (Personal communication to Dr. Ghosh).  

Initial experiments in Dr. Ghosh’s laboratory had successfully demonstrated small but 

reproducible increases in CEH activity using this cell culture system and those data 

formed the basis for using this system for the current studies.  However, the experiments 

performed during the period of this project were not successful.  Future studies may 

require further optimization of the cell culture system or may be even developing a new 

cell line based on HEK293 cells that possess much lower CE hydrolytic activity. 

 It has been demonstrated that HDL-CE delivered via SR-BI are readily 

hydrolyzed presumably in close proximity of the plasma membrane (20).  This led us to 

speculate that if CEH catalyzes the hydrolysis of HDL-CE, then the FC released by such 

hydrolysis should be readily available for efflux.  However, in the present study no 

significant difference in FC efflux was noted between cells transfected with pCMV or 

pCMV-CEH. Once again, in the absence of any direct measure of transfection 

efficiencies, these results cannot rule out the possibility that lack of successful 

transfection is probably the reason. While this interpretation is favored since earlier work 

in Dr. Ghosh’s laboratory did show a small but reproducible difference in FC efflux in 
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similar experiments, it is also possible that this CEH does not play a role in the hydrolysis 

of HDL-CE delivered via SR-BI. 

 The identity of the enzyme responsible for the hydrolysis of SR-BI delivered CE 

is not known (47).  A number of enzymes have the capability to hydrolyze CE.  In 

adrenal glands where SR-BI delivered HDL-CE is the major source of cholesterol for 

steroid hormone synthesis, hormone sensitive lipase is thought to be the enzyme that 

catalyzes this reaction (48). Liver does not express hormone sensitive lipase suggesting 

that some other CE hydrolase is responsible for this hydrolysis. The CEH cloned and 

characterized in Dr. Ghosh’s laboratory is one of these enzymes. This CEH belongs to a 

carboxylesterase family, several members of which are highly expressed in liver. The 

subcellular localization of these enzymes is controversial with reports suggesting it to be 

present in the cytoplasm as well as endoplasmic reticulum (49).  If SR-BI delivered CEs 

are delivered near the plasma membrane or are associated with cytoplasmic lipid 

droplets, then it is more likely that an enzyme present in the cytoplasm will be more 

likely to be involved in the hydrolysis of these CE. Further, since HDL-CE delivered via 

SR-BI are through a selective uptake pathway, only the CE enters the cell.  This 

precludes the involvement of acid or lysosomal CEH that is involved in the hydrolysis of 

LDL associated CE (3). HDL-CE delivered via SR-BII are thought to be predominantly 

via endocytosis (39) and selective uptake of CE by this receptor is considered inefficient, 

it is possible that some of HDL-CE may be hydrolyzed in the lysosomal compartment. 

While the aim of this study was to establish the role of CEH characterized in Dr. Ghosh’s 

laboratory in hydrolyzing HDL-CE delivered to the liver via SR-BI/BII, it is equally 
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important to establish the identity of the enzyme that is responsible for this hydrolysis in 

order to better understand the complete process of reverse cholesterol transport.  This 

knowledge is central to understanding the steps that may rate limit or regulate the final 

elimination of cholesterol from the body.  

 Another aim of this study was also to determine whether CEH differentially 

regulates the hydrolysis of HDL-CE delivered via SR-BI or SR-BII. SR-BII is an 

alternative mRNA splicing variant of SR-BI. SR-BI which is mainly (~70%) localized at 

the surface of transfected CHO cells, the majority of SR-BII (~80-90%) was expressed 

intracellularly (39).  Experiments showed that SR-BII rapidly internalized HDL protein, 

where as for SR-BI most HDL protein remained surface bound. Despite the fact that SR-

BII mediates cell-association of HDL at 37ºC in similar amounts as compared to SR-BI, 

the selective uptake capacity of SR-BII is less than SR-BI (39). Our present data was 

inconclusive and future studies are required to establish these differences. 

 In conclusion, the data presented here could not establish the role of CEH in 

hydrolyzing HDL-CE delivered via SR-BI or SR-BII. Several experimental limitations 

accounted for the lack of conclusive data and future studies need to be designed giving 

due consideration to these limitations.  Further, additional studies should be included to 

verify transfections to permit interpretations. 
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